Page last updated: 2024-12-10

1-methyl-6-[(4-methyl-1-piperidinyl)sulfonyl]-3-[oxo(1-piperidinyl)methyl]-4-quinolinone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

The compound you described, 1-methyl-6-[(4-methyl-1-piperidinyl)sulfonyl]-3-[oxo(1-piperidinyl)methyl]-4-quinolinone, is a complex organic molecule with a specific chemical structure. It is not a commonly known or widely researched compound, so finding definitive information about its importance is challenging.

However, based on its structure, it likely possesses some key characteristics:

* **Quinolone Core:** The presence of a quinolone core suggests potential biological activity. Quinolones are a class of compounds known for their antibacterial, antifungal, and anti-inflammatory properties.
* **Sulfonyl Group:** The sulfonyl group (-SO2-) is often found in drugs and can contribute to activity by increasing lipophilicity (ability to cross cell membranes) and affecting the molecule's binding affinity to biological targets.
* **Piperidine Rings:** Piperidine rings are cyclic amines often found in pharmaceuticals and can contribute to drug-like properties.

**Possible Research Significance:**

Given the structural features, this compound could be of interest for research in the following areas:

* **Pharmacology:** The compound might exhibit pharmacological activity related to its quinolone core, potentially as an antibacterial, antifungal, or anti-inflammatory agent.
* **Medicinal Chemistry:** Researchers could investigate this compound as a starting point for developing new drugs, exploring modifications to the structure to improve its potency, selectivity, and other pharmacological properties.
* **Materials Science:** The compound could be investigated for its potential use in materials applications, leveraging its unique chemical properties and potentially forming polymers or composites.

**Finding Further Information:**

To learn more about this specific compound and its potential significance, you could:

* **Search scientific databases:** Use databases like PubMed, Scopus, and Google Scholar to search for publications related to the compound's name or its structural components.
* **Contact experts:** Reach out to researchers in the fields of medicinal chemistry, pharmacology, or materials science who might have expertise in this area.
* **Consult chemical suppliers:** Companies that synthesize and sell chemicals might have information about the compound's properties and potential applications.

Remember, without a specific context or published research on this compound, it's difficult to provide a definitive answer regarding its importance. However, its structural features suggest it could be a valuable starting point for further investigation in various scientific fields.

Cross-References

ID SourceID
PubMed CID3244996
CHEMBL ID1540721
CHEBI ID113215

Synonyms (15)

Synonym
smr000030662
1-methyl-6-[(4-methylpiperidin-1-yl)sulfonyl]-3-(piperidin-1-ylcarbonyl)quinolin-4(1h)-one
MLS000095108 ,
MLS001065380 ,
CHEBI:113215
AKOS001821525
1-methyl-6-(4-methylpiperidin-1-yl)sulfonyl-3-(piperidine-1-carbonyl)quinolin-4-one
HMS2390I04
sr-01000129360
SR-01000129360-4
AB00411861-09
CHEMBL1540721
1-methyl-6-[(4-methyl-1-piperidinyl)sulfonyl]-3-[oxo(1-piperidinyl)methyl]-4-quinolinone
Q27193681
SR-01000129360-1
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (2)

ClassDescription
aromatic amideAn amide in which the amide linkage is bonded directly to an aromatic system.
quinolinesA class of aromatic heterocyclic compounds each of which contains a benzene ring ortho fused to carbons 2 and 3 of a pyridine ring.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (5)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency0.70790.707936.904389.1251AID504333
serine-protein kinase ATM isoform aHomo sapiens (human)Potency4.46680.707925.111941.2351AID485349
parathyroid hormone/parathyroid hormone-related peptide receptor precursorHomo sapiens (human)Potency125.89203.548119.542744.6684AID743266
lethal(3)malignant brain tumor-like protein 1 isoform IHomo sapiens (human)Potency31.62280.075215.225339.8107AID485360
TAR DNA-binding protein 43Homo sapiens (human)Potency2.81841.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (18)

Processvia Protein(s)Taxonomy
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (9)

Processvia Protein(s)Taxonomy
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]